Rabbit Anti-Mouse Lyve-1
Slide this table
Cat-Nr. | 103-PA50S |
Size | 100 µg |
Price | 185 € |
Category | Polyclonal Antibody |
Clone Nr. | Rabbit IgG |
Species Reactivity | Mouse |
Formulation | lyophilized |
Buffer | PBS |
Reconstitution | Centrifuge vial prior to opening. Reconstitute in sterile water to a concentration of 0.1-1.0 mg/ml. |
Stability and Storage | The lyophilized antibody is stable for at least 2 years at -20°C. After sterile reconstitution the antibody is stable at 2-8°C for up to 6 months. Frozen aliquots are stable for at least 6 months when stored at -20°C. Addition of a carrier protein or 50% glycerol is recommended for frozen aliquots. |
Preparation | Produced from sera of rabbits immunized with highly pure recombinant mouse soluble LYVE-1 produced in insect cells. The recombinant soluble LYVE-1 consists of amino acid 24 (Ala) to 228 (Gly) and is fused to a C-terminal His-tag (6xHis). |
Antigen | Recombinant mouse soluble Lyve-1 (RT#S01-026) |
Application | WB, IHC (C), IF, FC |
Synonyms | Lyve1; Xlkd1; Lyve-1; Crsbp-1; 1200012G08Rik |
Description | LYVE-1 has been identified as a major receptor for HA (extracellular matrix glycosaminoglycan hyaluronan) on the lymph vessel wall. The deduced amino acid sequence of LYVE-1 predicts a 322-residue type I integral membrane polypeptide 41% similar to the CD44 HA receptor with a 212-residue extracellular domain containing a single Link module the prototypic HA binding domain of the Link protein superfamily. Like CD44, the LYVE-1 molecule binds both soluble and immobilized HA. However, unlike CD44, the LYVE-1 molecule colocalizes with HA on the luminal face of the lymph vessel wall and is completely absent from blood vessels. Hence, LYVE-1 is the first lymph-specific HA receptor to be characterized and is a uniquely powerful marker for lymph vessels themselves. |
Uniprot ID | Q8BHC0 |
Protein RefSeq | NP_444477 |
mRNA RefSeq | NM_053247 |
Figures
Reference
- Anti-lymphangiogenesis for boosting drug accumulation in tumors. C. Wang et al., Signal Transduct Target Ther. 2024; 9: 89.
- VE-cadherin junction dynamics in initial lymphatic vessels promotes lymph node metastasis. M. Sáinz-Jaspeado et al., Life Sci Alliance. 2024 Mar; 7(3): e202302168.
- Liver type 1 innate lymphoid cells lacking IL-7 receptor are a native killer cell subset fostered by parenchymal niches. T. Asahi et al., eLife. 2023; 12: e84209.
- Heterogeneity and developmental dynamics of LYVE-1 perivascular macrophages distribution in the mouse brain. M. Karam et al., J Cereb Blood Flow Metab. 2022 Oct; 42(10): 1797–1812.
- 1270 nm near-infrared light as a novel vaccine adjuvant acts on mitochondrial photoreception in intradermal vaccines. Y. Maki et al., Front Immunol. 2022; 13: 1028733.
- Volumetric imaging reveals VEGF-C-dependent formation of hepatic lymph vessels in mice. S. Bobe et al., Front Cell Dev Biol. 2022; 10: 949896.
- Multitier mechanics control stromal adaptations in the swelling lymph node. F. P. Assen et al., Nat Immunol. 2022; 23(8): 1246–1255.
- Apelin promotes blood and lymph vessel formation and the growth of melanoma lung metastasis. J. Berta et al., Sci Rep. 2021; 11: 5798.
- Fibroblast-derived IL-33 is dispensable for lymph node homeostasis but critical for CD8 T-cell responses to acute and chronic viral infection. P. Aparicio-Domingo et al., European Journal of Immunology Volume 51, Issue 1.
- Lymphatic and Immune Cell Cross-Talk Regulates Cardiac Recovery After Experimental Myocardial Infarction. Houssari M. et al., Arterioscler Thromb Vasc Biol. 2020 May 14:ATVBAHA120314370.
- A Single-Cell Transcriptional Roadmap of the Mouse and Human Lymph Node Lymphatic Vasculature. M. Xiang et al., Front Cardiovasc Med. 2020; 7: 52.
- Fenestral diaphragms and PLVAP associations in liver sinusoidal endothelial cells are developmentally regulated. Auvinen K. et al., Sci Rep. 2019 Oct 30;9(1):15698.
- Paraxial Mesoderm Is the Major Source of Lymphatic Endothelium. O.A. Stone and D.Y.R. Stainier, Dev Cell. 2019 Jul 22; 50(2): 247–255.e3.
- Attenuation of chronic antiviral T-cell responses through constitutive COX2-dependent prostanoid synthesis by lymph node fibroblasts. Schaeuble K. et al., PLoS Biol. 2019 Jul; 17(7): e3000072.
- Transmembrane protein 215 promotes angiogenesis by maintaining endothelial cell survival. Liu Y. et al., J Cell Physiol. 2019 Jun; 234(6): 9525–9534.
- Non-canonical WNT-signaling controls differentiation of lymphatics and extension lymphangiogenesis via RAC and JNK signaling. Lutze G. et al., Sci Rep. 2019 Mar 18;9(1):4739.
- IFNγ-activated dermal lymphatic vessels inhibit cytotoxic T cells in melanoma and inflamed skin. Lane RS et al., J Exp Med. 2018 Dec 3; 215(12): 3057–3074.
- Brief Exposure of Skin to Near-Infrared Laser Modulates Mast Cell Function and Augments the Immune Response. Y. Kimizuka et al., J Immunol. 2018 Dec 15;201(12):3587-3603.
- Downregulation of VEGFR3 signaling alters cardiac lymphatic vessel organization and leads to a higher mortality after acute myocardial infarction. Vuorio T et al., Sci Rep. 2018 Nov 12;8(1):16709.
- Characterization of a B16-F10 melanoma model locally implanted into the ear pinnae of C57BL/6 mice. Potez M. et al., PLoS One. 2018 Nov 5;13(11):e0206693.
- Lymphatic endothelium stimulates melanoma metastasis and invasion via MMP14-dependent Notch3 and β1-integrin activation. Pekkonen P. et al, Elife. 2018 May 1;7. pii: e32490.
- HHEX is a transcriptional regulator of the VEGFC/FLT4/PROX1 signaling axis during vascular development. Gauvrit S. et al., Nat Commun. 2018 Jul 13;9(1):2704.
- PECAM/eGFP transgenic mice for monitoring of angiogenesis in health and disease. Winkler F. et al., Sci Rep. 2018 Dec 4;8(1):17582.
- Absence of MHC-II expression by lymph node stromal cells results in autoimmunity. Dubrot J. et al., Life Sci Alliance. 2018 Dec 17;1(6):e201800164.
- T Cells Redirected to a Minor Histocompatibility Antigen Instruct Intratumoral TNFα Expression and Empower Adoptive Cell Therapy for Solid Tumors. T. Manzo et al., Cancer Res January 31 2017 77 (3) 658-671.
- TGFβ counteracts LYVE-1-mediated induction of lymphangiogenesis by small hyaluronan oligosaccharides. Bauer J et al., J Mol Med (Berl). 2018 Feb;96(2):199-209.
- Interactions between fibroblastic reticular cells and B cells promote mesenteric lymph node lymphangiogenesis. L. K. Dubey et al., Nat Commun. 2017; 8: 367.
- YAP determines the cell fate of injured mouse hepatocytes in vivo. N. Miyamura et al., Nat Commun. 2017; 8: 16017.
- Pivotal role for skin transendothelial radio-resistant anti-inflammatory macrophages in tissue repair. O. Barreiro et al., eLife. 2016; 5: e15251.
- Angiocrine Bmp2 signaling in murine liver controls normal iron homeostasis. P.-S. Koch et al., Blood. 2017 Jan 26; 129(4): 415–419.
- Selective Stimulation of Cardiac Lymphangiogenesis Reduces Myocardial Edema and Fibrosis Leading to Improved Cardiac Function Following Myocardial Infarction. O. Henri et al., Circulation. 2016 Apr 12;133(15):1484-97.
- Phenotypic transformation of intimal and adventitial lymphatics in atherosclerosis: a regulatory role for soluble VEGF receptor 2. M. Taher et al., FASEB J. 2016 Jul; 30(7): 2490–2499.
- Fetal liver endothelium regulates the seeding of tissue-resident macrophages. Rantakari P et al., Nature. 2016 Oct 20;538(7625):392-396.
- Gene-expression profiling of different arms of lymphatic vasculature identifies candidates for manipulation of cell traffic. I. Iftakhar-E-Khuda et al., Proc Natl Acad Sci U S A. 2016 Sep 20; 113(38): 10643–10648.
- Medicinal facilities to B16F10 melanoma cells for distant metastasis control with a supramolecular complex by DEAE-dextran-MMA copolymer/paclitaxel. Eshita Y. et al., Drug Deliv Transl Res. 2015 Feb;5(1):38-50.
- A Novel Treatment Method for Lymph Node Metastasis Using a Lymphatic Drug Delivery System with Nano/Microbubbles and Ultrasound. Shigeki Kato et al., J Cancer. 2015; 6(12): 1282–1294.
- The endothelial protein PLVAP in lymphatics controls the entry of lymphocytes and antigens into lymph nodes. Rantakari P et al., Nat Immunol. 2015 Apr;16(4):386-96.
- Clonal analysis identifies hemogenic endothelium as the source of the blood-endothelial common lineage in the mouse embryo. L. Padrón-Barthe et al., Blood. 2014 Oct 16; 124(16): 2523–2532.
- An Inducible Hepatocellular Carcinoma Model for Preclinical Evaluation of Antiangiogenic Therapy in Adult Mice. A. Runge et al., Cancer Res. 2014 Aug 1;74(15):4157-69.
- Cancer-associated fibroblasts expressing CXCL14 rely upon NOS1-derived nitric oxide signaling for their tumor-supporting properties. M. Augsten et al., Cancer Res. 2014 Jun 1;74(11):2999-3010.
- The effect of podoplanin inhibition on lymphangiogenesis under pathological conditions. Maruyama Y. et al., Invest Ophthalmol Vis Sci. 2014 Jul 1;55(8):4813-22.
- Steady-State Antigen Scavenging, Cross-Presentation, and CD8+ T Cell Priming: A New Role for Lymphatic Endothelial Cells. S. Hirosue et al., J Immunol. 2014 Jun 1; 192(11): 5002–5011.
- Apelin promotes lymphangiogenesis and lymph node metastasis. J. Berta et al., Oncotarget. 2014 Jun; 5(12): 4426–4437.
- Tumor-Derived Interleukin-1 Promotes Lymphangiogenesis and Lymph Node Metastasis through M2-Type Macrophages. Kosuke Watari et al., PLoS One. 2014; 9(6): e99568.
- Optimization and regeneration kinetics of lymphatic-specific photodynamic therapy in the mouse dermis. W. W. Kilarski et al., Angiogenesis. 2014; 17(2): 347–357.
- Inhibition of VEGFR-3 activation in tumor-draining lymph nodes suppresses the outgrowth of lymph node metastases in the MT-450 syngeneic rat breast cancer model. Quagliata L. et al., Clin Exp Metastasis. 2014 Mar;31(3):351-65.
- TGFβ signaling is required for sprouting lymphangiogenesis during lymphatic network development in the skin. J. M. James et al., Development. 2013 Sep 15; 140(18): 3903–3914.
- A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. R. Hägerling et al., EMBO J. 2013 Mar 6; 32(5): 629–644.
- Lymphatic drainage pathways from the cervix uteri: implications for radical hysterectomy? Kraima AC et al., Gynecol Oncol. 2014 Jan;132(1):107-13.
- Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. H. Wiig et al., J Clin Invest. 2013 Jul 1; 123(7): 2803–2815.
- Intravital Immunofluorescence for Visualizing the Microcirculatory and Immune Microenvironments in the Mouse Ear Dermis. W. W. Kilarski et al., PLoS One. 2013; 8(2): e57135.
- VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Lund AW et al., Cell Rep. 2012 Mar 29;1(3):191-9.
- Smooth muscle–endothelial cell communication activates Reelin signaling and regulates lymphatic vessel formation. S. Lutter et al., J Cell Biol. 2012 Jun 11; 197(6): 837–849.
- miRNAs control the maintenance of thymic epithelia and their competence for T lineage commitment and thymocyte selection. S. Zuklys et al., J Immunol. 2012 Oct 15;189(8): 3894–3904.
- Specific Inhibition of SRC Kinase Impairs Malignant Glioma Growth In Vitro and In Vivo. H. Stedt et al., Mol Ther Nucleic Acids. 2012 May; 1(5): e19.
- Downregulation of VEGF-C expression in lung and colon cancer cells decelerates tumor growth and inhibits metastasis via multiple mechanisms. Khromova N et al., Oncogene. 2012 Mar 15;31(11):1389-97.
- Association of T-zone reticular networks and conduits with ectopic lymphoid tissues in mice and humans. Link A et al., Am J Pathol. 2011 Apr;178(4):1662-75.
- Different role of CD73 in leukocyte trafficking via blood and lymph vessels. Ålgars A et al., Blood. 2011 Apr 21;117(16):4387-93.
- Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing. Yuji Okuno et al., Blood. 2011 May 12; 117(19): 5264–5272.
- Cotargeting of VEGFR-1 and -3 and angiopoietin receptor Tie2 reduces the growth of solid human ovarian cancer in mice. Sallinen H et al., Cancer Gene Ther. 2011 Feb;18(2):100-9.
- Platelets play an essential role in separating the blood and lymphatic vasculatures during embryonic angiogenesis. L. Carramolino et al., Circ Res. 2010 Apr 16;106(7):1197-201.
- Integrin-α9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. E. Bazigou et al., Dev Cell. 2009 Aug; 17-2: 175–186.
- Modulating metastasis by a lymphangiogenic switch in prostate cancer. E. Brakenhielm et al., Int J Cancer. 2007 Nov 15; 121(10): 2153–2161.
- Essential in Vivo Roles of the C-type Lectin Receptor CLEC-2: EMBRYONIC/NEONATAL LETHALITY OF CLEC-2-DEFICIENT MICE BY BLOOD/LYMPHATIC MISCONNECTIONS AND IMPAIRED THROMBUS FORMATION OF CLEC-2-DEFICIENT PLATELETS. K. Suzuki-Inoue et al., J Biol Chem. 2010 Aug 6; 285(32): 24494–24507.
- Pkd1-inactivation in vascular smooth muscle cells and adaptation to hypertension. Hassane S. et al., Lab Invest. 2011 Jan;91(1):24-32.
- Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. S. J. Priceman et al., Blood. 2010 Feb 18; 115(7): 1461–1471.
- Endothelin-1 stimulates lymphatic endothelial cells and lymphatic vessels to grow and invade. F. Spinella et al., Cancer Res. 2009 Mar 15;69(6):2669-76.
- Suppression of Prostate Cancer Nodal and Systemic Metastasis by Blockade of the Lymphangiogenic Axis. J. B. Burton et al., Cancer Res. 2008 Oct 1; 68(19): 7828–7837.
- M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. Yoshiaki Kubota et al., J Exp Med. 2009 May 11; 206(5): 1089–1102.
- Fluid flow regulates stromal cell organization and CCL21 expression in a tissue-engineered lymph node microenvironment. Tomei AA et al., J Immunol. 2009 Oct 1;183(7):4273-83.
- Myeloid Cells Contribute to Tumor Lymphangiogenesis. A. Zumsteg et al., PLoS One. 2009; 4(9): e7067.
- Vascular endothelial growth factor-D transgenic mice show enhanced blood capillary density, improved postischemic muscle regeneration, and increased susceptibility to tumor formation. Kärkkäinen AM et al., Blood. 2009 Apr 30;113(18):4468-75.
- Atu027, a Liposomal Small Interfering RNA Formulation Targeting Protein Kinase N3, Inhibits Cancer Progression. M. Aleku et al., Cancer Res. 2008 Dec 1;68(23):9788-98.
- Antiangiogenic Gene Therapy With Soluble VEGFR-1, -2, and -3 Reduces the Growth of Solid Human Ovarian Carcinoma in Mice. H. Sallinen et al., Mol Ther. 2009 Feb; 17(2): 278–284.
- Adenovirus-mediated gene expression imaging to directly detect sentinel lymph node metastasis of prostate cancer. J. B. Burton et al., Nat Med. 2008 Aug; 14(8):882–888.
- Dendritic cell PAR1-S1P3 signalling couples coagulation and inflammation. Niessen F. et al., Nature. 2008 Apr 3;452(7187):654-8.
All prices plus VAT + possible delivery charges